Math 31b : Midterm 1, Spring 2012

Professor Curran

Each problem is worth 10 points.

1. Evaluate the following limits:
(a)

$$
\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}
$$

(b)

$$
\lim _{x \rightarrow 0+}(\cos x)^{1 / x^{2}}
$$

2.

(a) Evaluate the indefinite integral

$$
\int \frac{\ln (\ln x)}{x \ln x} d x
$$

(b) Use logarithmic differentiation to compute $f^{\prime}(x)$, where

$$
f(x)=\frac{\sqrt{x^{3}+2} \cdot(x-1)^{2 / 3}}{\left(4+x^{2}\right)^{3}}
$$

for $x>1$.
3. Let $f(x)=x^{5}+2 x$.
(a) Show that $f(x)$ is one-to-one on $(-\infty, \infty)$.
(b) Let $g(x)=f^{-1}(x)$. Find $g^{\prime}(3)$.
4. A continuous annuity with withdrawal rate $N=\$ 1000 /$ year and interest rate r is funded by an initial deposit of $P_{0}=\$ 10000$. Let $P(t)$ be the balance of the account after t years.
(a) Write the differential equation satisfied by $P(t)$.
(b) What is the smallest value of r for which the annuity will never run out of money?
(c) If $r=5 \%$, at what time will the annuity run out of funds?
5. The number of computers infected by a certain computer virus increases at a rate proportional to the number of computers currently infected. Suppose that on January 20, 2012 there were 2^{10} computers infected with the virus, and three days later there were 2^{12} computers infected.

Let $P(t)$ be the number of computers infected t days after the virus was released (i.e. after the first computer was infected).
(a) What differential equation does $P(t)$ satisfy?
(b) Find the formula for $P(t)$.
(c) On what day was the virus released?

